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I. INTRODUCTION

Before group complementary ccde concepts are described, a short review
of the benefits and techniques of pulse compression in sensor systems is

M
nresented. 1,2]

Pulse compression involves the rearrangement of the temporal distribution
of energy in a pulse in such a way that a long pulse with a given energy
is transformed to a shorter pulse with the same energy. The instantaneous
power during the shortened pulse is therefore greater than the instantaneous
power during the long pulse, since the total energy is the same for both.

Pulse compression is useful in target sensor systems for several reasons.
Recause target tracking is essentially a process of measurement of the time of
arrival of a waveform, pulse compression allows a more precise measurement
of arrival time and therefore of the range to the target. If the active
sensor is peak power limited, as is usually the case, pulse compression
allows long pulse, limited peak power systems to have performance equivalent
to a shorter pulse higher peak power system. Of equal or greater importance
is the improved range resolution afforded with pulse compression.

Ideally, pulse compression is implemented with matched filters where the
processing device is a network with impulse response matched to the time
reverse of the long pulse waveform. This matched filter operation results in

maximizing the signal-to-noise ratio and in optimum detection of the target.
Figure 1 illustrates the concept of pulse compression.

Pulse compression provides a radar sensor with
¢ IMPROVED RANGE RESOLUTION

o EQUIVALENT DETECTION PERFORMANCE TO A HIGH PEAK POWER SYSTEM

o MAXIMIZED SIGNAL-TO-NOISE AND OPTIMUM TARGET DETECTABILITY
THROUGH MATCHED FILTERING

LONG PULSE COMPRESSED PULSE
PULSE
COMPRESSION -
> NETWORK >

Figure 1., Pulse compression in target sensors.




Pulse compression techniques can be implemented using transversal
filtering. Essentially, the method is to delay the energy arriving early
in the long pulse period, add it coherently with the energy that arrives
later in the pulse, and output the resulting shorter pulse. Two technical
issues that arise in the evaluation of the effectiveness of the pulse
compression systems are sidelobes in the compressed pulse wave form and the
response of the transversed filter to other, nonmatched waveforms which may
be present in the received signal. The nonmatched waveforms could be the
result of receiving the transmission of other deployed sensors or the result
of the transmission of intentional jammers. Figure 2 illustrates the
implementation of pulse compression using a matched transversal filter.

An array of waveforms has been used for pulse compression, including
binary coding of the phase of a carrier signal (bi-phase modulation using
binary codesl[3]Perhaps the best known codes for use in bi-phase modulation
implementations of pulse compression are the Barker Codes. Other binary
waveforms that have been used for pulse compression include pseudo random
codes and random binary codes. Nonbinary waveforms that have been used
for pulse compression include FM modulated signals and polyphase codes.

MOLTITAP

mEt Sw g ter
SEAY-LINE

CutruT

Figure 2. A matched transversal filter for pulse compression,
the weighting network provides an inpulse response
matched to the time reverse of the input waveform.

A problem that has limited the utility of pulse compression and correlation
receivers in radar systems has been the existence of temporal/ranyge sidelobes
in the correlation function of the radar waveform. These sidelobes allow
out-of-range-gate returns, such as clutter, to compete with a target in a
particular range gate. A number of research eftorts have addressed this
problem in the past, and several waveform designs have resulted in the potential
reduction or elimination of the range sidelobe problem. For example, Barker
codes (also known as perfect binary words) limit the range sidelobes to a
value of 1/N, expressed in the autocorrelaticn function:

fC(’)fj 1/N, where - = IT and i £ 0,

i~
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where N is the code length and T, is the reciprocal of the code rate. Figure 3
ijllustrates the correlation function of a length 13 Barker Code. Barker

codes are known for lengths only up to N = 13, and they do not match the
desired 'perfect" range correlation property,
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Figure 3. Absolute value of the normalized autocorrelation
function of the 13-bit Barker code.

Application of Golay code pairs (also known as complementary sequences)
involves processing two coded pulses at a time in a radar processor to
eliminated the range sidglobes/%] These codes have the property that when
their individual range sidelobes are combined (algebraic addition), the composite
sidelobes completely cancel, yielding the desired perfect correlation property.
Complementary sequences are known to exist for a limited number of sequence
lengths, including N =2, 4, 8, 10, 16, 20, 32 and 40.

Several properties of binary code waveforms are desirable if they are to
be used in implementing pulse compression in the target sensor component of a
missile or fire-control system. These include very low or zero creoss correla-
tion with other binary codes that may be implemented in sensors deployed
nearby. These properties would ensure that there would be little or no degrada-
tion in sensor system perfcrmance due to out-of-range clutter returns, multiple

target sidelobes, or from mutual interference between deployed sensors using
different codes.

Long 'inary codes with the desired properties are required in order to
implement waveforms with large time-bandwidth products and large pulse-width
compression ratios. This document describes the structure and properties of
such a waveform, called group complementary codes.
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IT. STRUCTURE AND PROPERTIES OF GROUP COMPLEMENTARY CODES

Group complementary codes are extensions of the complementary code
concept introduced by Golay.[4] The codes discussed here are matrices of K by N
binary elements, and the pulse compression processing involves transforming
K long pulses, each coded with one of the K rows of N-bit binary words, into
one single short pulse. Therefore, the pulse compression is a composite
operation over a number of pulses rather than on a single pulse.

The implementation of the multipulse processing technique could take
several forms but would necessarily require the storage of the partial
correlation resulting from each of the K pulses to form the composite matrix
correlation. One means of implementing the concept would utilize Charge
Coupled Device (CCD) delay lines for storage of each of the K pulse correlations.
The device would then provide K inputs for the formation of the composite
compressed pulse. Another implementation would involve the use of one
integrator to accumulate the range-time samples resulting from correlating
the K pulses. Figure 4 illustrates the multiword pulse compression concept
where -, is the width of each code pulse, T is the single pulse unambigious
intervaE, and KT is the group unambigious interval.

A group complementary matrix is composed of K rows and N columns with
each element being a pulse or minus "1". Each row is a code word used to
encode each of K radio frequency pulses using bi-phase modulation.

The first K-1 rows are shifted versions of the same maximal length
code word but with an extra bit of value "1" added at the end. The last row
of the matrix is composed of all "1"s. Since a new matrix may be established
for each unique maximal length word, M unique matrices exist for M unique code
words.

KONET T RN

4|
{ —
S IV S - S 1
g
!
MULTTYORD
S DULSE —
COMPROSHON
FROCLSS

e
§

Figure 4. Multiword pulse compression.
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A very large set of zroup complementary matrices may be zenerated from
this configuration. An initial unique, but square, matrix may be operated
upon in four different ways, in combination or separatelv, to generate new
group complementary code matrices while maintaining the desired and beneficial
properties: (1) one or more columns may be truncated, (2) columns or rows may
be interchanged, (3) one or more rows may be complemented, and (4) one or
more columnc may be complemented. This provides a maximum number of poussible
code matr 'ces as:

K~1 v
) K1 NUOKD 2N 2N
N=0 N!(K-N)!

which reduces to

, K
M(R!)™ 2 Z ( )
Y1 M1 -

However this includes duplicate matrices and the total value only serves as a
gross upper limit on the number of available matrices. For one unique maximal
length code and an initial matrix with 16 rows and 15 columns this would result
in an upper limit of more than 3.10 X 1036 group ccmplementary code matrices

as compared with 28K possible matrices without including truncated columns.
This would be °l6( 5)or greater than 1.76 X 1072,

Three examples of group complementary matrices are presented in Figure 5.
The first is a square matrix with N = K = 2% rows and columns. Each of the
first K-1 rows except for the last bit, is a shifted version of the same
manimal length code. The last row is all "1"s. The second example is derived
from the first by truncating the last column of the first martix and the third
example is derived from the first by truncating the last two columns.

The first code structure shown in Figure 5 is an example of a square
matrix, H, which satisfies

H-H® = NI

where HT is the transpose of H, I is the identity matrix, and N is the order
of H. Such a matrix is called a Hadamard matrix if its elements are +1's and
-1's and satisfy the above relation.[3]°[6] It is clear that a group complemen-
tary matrix with

K =N =20

is a Hadamard matrix where n is an integer and is the order of the maximum
length sequence comprizing the first N-1 elements of each row of the matrix.
All other cases of group complementary matrices are truncated (columns
truncated) Hadamard matrices.

Group complementary codes have optimized autocorrelation properties;
that is, all autocorrelation sidelobes within the principal interpulse period
are identically zero when the autocorrelation function is formed from the
composite of K pulses. TFigure 6 illustrates the autocorrelation of two
repetitive waveforms, one using the same code word and the second using K code
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Ve s §
f-1 - - -1 1

- S 1 1 1 1
1 -1 -1 -1 1 1 ~1 1
L 1 -1 -1 -1 1 1 1
1 -1 1 -1 -1 -1 1 1

K e 3

ﬁ 1 1 -1 1 el -1 -1 1
<l 1 1 <1 1 -1 -1 1
-1 -1 1 1 -1 1 -1 1
Lr 0t 1 1 1 1 o1 1

Example 2: ¥ = K = 1 @« 2%-1; n an iateqer

-
(f:I -1 -1 1 1 .1 1D
1 =1 -1 -1 1 1 =1
-1 1 -1 -1 -1 1 1
1 -1 1 =1 -1 -1 1
K= sﬁ 1 1 =2 1 =1 -1 -1
S T S S
-1 -1 1 1 -1 1 -1
R T S S
Example. 3 N < Rl
Nes
1 -1 -iJ\‘A; 1 -1
(
1 <1 -1 -1 1 1
<1 1 el -l -1 1
1 -1 1 <l -1 -1
L
-1 1 1 -1 1 -
S S S S Y
Lt ot 1 o1 11

Figure 5. Group complementaryv code matrices:

three examples.
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words. Wwith K code words, the principal anambizcious interval b
from T to KT units and the sidelobes in the interval » o7 =V have been
reduced to zero. "Scceond-time-around” Cambicicns) responses would e disaplaced

from the peak of the autocorrelation function by oo tactor K oas compared G
the second-time-around reponses inoan anceded pulse sensor svstem, 7

is analogous to the casce of interpulse coding where cach palse o medulated
by a single binary clement.

The structure of aroup complementary codes can te understood Dy consider-
ing each group complementary matrix as o composite of o number of veotors,
cach vector being a shifted version of a4 maxinum lensth sequence, or g
vector with all +1 clements.  Fioure 7 shows the stractnre o the aroup
complementary matrix.

5 MOK-2) 1

. L1 1

C

b Figure 7. Structure of gsroup complementary matrix as composite of maximal
s

length vectors and all 1" vectors.

e figure M(S) is a maximum length sequence with a4 cvlic shift of S bins.
In the figure M(S) xim 1 t JUen ict vl L oot ¢
For example, if

ol
. M)y = -1 -1 -1 1 1 -1 i
3 R B O Tt et
}
i The sturcture for calculating the correlation bhetween a uroup comple-
F mentary matrix and a shifted version of itselt, at one particular shift, is
§ o indicated in Figure 3. The correlation for a given shift is the sum of K
f partial correlation results as shown in Figure 9, where Vi(') is a partial
i correlation result, and it wil! be shown that
K-l
() = Gy =0 for 1& ¥<€u-1
i

o i=0
E and RS
‘ cy = ¥ ) = o
s 24 i
3 1=
b
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The group complementarv matrix can be segmented in a different but
equivalent manner as shown in Figure 10 because each column is a previously
identified maximal length code arranged in the order shown.

4 WA //1' 1
/ / A
s VS ey, ' B
s TS ~ 7 T .
s L s/ e {
/ /// / / . ‘ .
VA - {
// / / / Y/ . “ .
7 // / // / s/ ME=2) V
, // // |
/s Ve / 1
/ s /S 11 L 1,11
4 Z s 7 7/ / / /
1 v
4!_31(0) A4 ///
1 M 1 ///// /
| . A 7 /
‘T‘ s |7 / ////' /<;
M Wa
+- v (A (N
4%‘ /‘/ 4 / //”/
i N A l/// 7 '
| k- ~ A /
— 7 7 Vv ”/’
BRSNS £8 %
Figure 8. Tormation of autocorrelation function for a group

complementary matrix for a particular shift.

For this alternate interpretation of the matrix of Figure 10, the structure
for calculation the correlation at a particular shift is shown in Figure ll.
The correlation is the sum of (N- - ) partial correlation results as shown

in Figure 12. From the two alternate interpre¢tations of the matrix, with Py
defined by Figure 12,

K-1 N-"
c(-) = ci)y = L oey
i=0 i=1

because each product of elements contributing to the sum once and only once
for row to row correlation exist once and only once in the sum for column to
column correlation. In the latter there are fewer columns to add, but each
column has more producted elements.
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Figure 9. Autocorrelation for a shift for group complementary matrices.

Figure 10. Alternate interpretation ot the structure
ol group complementory matrix.
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A Jetailed examination of the caleulation of an P term shows that if
¥ - - the caleulation is the correlation of a maxifum length sequence with
a shifrted version of itself plus a 1. This result will always be 0. If i =X
- © the calculation s the corrclation of a maximum length sequence plus a 1
with an all "1" vector. This result also will always be 0. And therefore

K-1 Nees

C(=) = C Y= F P =40, - #0
i

i =

o ! i-1

[N
1]

since all Pi arce zero. Also, C(0Q) = KN since this is perfect correlaticen for

{ no shift. An example of a group complementary matrix structure where eight

! code words are used, each with 6 bits, is shown in Figure 13 with the principal
f portion of its autocorrelation response.

'e ////‘///1 1
/ //
71 /7 1
/’ v L
- 2N s !
:  J 7 /
//// e ¢ 4 *
4 7 g/ o .
[—‘ IRV AR4 BN ~l=].
L AR R cis
o / /1 == ==l
. SRV a4
: /‘/ /7 77 1
: R 11 1 1 1
L I/ /// / o e
- /S 7/
[C | A,
: 1 /’/ 7 /,/ /7 7/
[ 1///////
i - = s /,’//
{ |~ |22 S
b= = =2, 7,7
p V72 r
{ 7 Vb ‘t’/ 7 7/
: AN 0177
yan /1 /'//

,_4
-
.
.
N
-
-
=
-

a Z 4

i

[ e Figure 11. Formation of autocorrelation function for a
! group complementary martix.

Multiple-time-around responses are observed when the received code word
occurs at multiples of the unambiguous interval. This results in weak
responses which appear far removed from the main peak unambiguous response.

4 q Two cases may occur, one when different code words (rows) are in phase
- alignment and the second when partial alignment occurs.” In the first case
the response is identically zero because two maximal length codes are cross
rorrelated when one is a shifted version of the other and the extra bit at
the end of each word reduces the correlation to zero. 1In the second case the
response will be due to the aperiodic property of code word and can be minimized
q v choosing maximum length code words with manimum aperiodic sidelobes.
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ITI. GROUP COMPLEMENTARY CODE IMPLEMENTATION

Group complementary codes may be implemented in hardware in a number of
ways. On particular implementation is shown in the simplified schematic
diagram (Figure 13A). K pulses are generated and transmitted at a given pulse
repetition rate (PRF). Each pulse is encoded with N bits of bi-phase modulation.
After transit delay to the RF reflector of interest, the received signal is
cross correlated with an appropriately delay reference code. K pulses are
added to form this range gate output. This process effectively accomplishes
range gating, and the desired number of range gates are formed h»y a
corresponding number of correlators.

The RF pulses to be transmitted are generated in the Transmitter/Local
Oscillator Frequency Reference Unit. Each pulse is encoded using bi-phase
modulation and this is accomplished at the Modulator where the phase during
the RF pulse is changed by 180 degrees or not changed according to the base
band video code word. The code word is developed in the Code Generator Unit
and it is composed of N bits of a digital word which controls the phase
changes according to the bit pattern. The code word is commensurate with the
RF pulse in time of occurrence and duration.

The encoded RF pulses are routed to the circulator which in turn directs
the RF energy to the antenna. The radiated pulses are received by the
antenna upon reflection from objects in the antenna field of view. The received
pulses are routed through the circulator to the first mixer. Here tne received
signals are translated in frequency to the first Intermediate Frequency (IF)
amplifier's center frequency for amplification and filtering. Qutput of
this unit is routed to the second mixer for further translation and amplification
at the second IF frequency. The output of the second IF amplifier becomes one
of the two input signals which the correlator operates upon. The second
input signal to the correlator is a base band code word derived in the Code
Generator Unit. The correlator is composed of a mixer and an integrator to
ecarry out the cross correlation function between the received code word and
the reference code word. The reference code word is a delayed version of the
transmitted code word. The delay corresponds to the range of interest for
a given range gate. Additional range gates are formed with additional
correlators and delayed reference code words. The range gate is formed by
summing the output of the correlator after each cf K pulses are received.
This summation is accomplished by the integrator and its output becomes
the range gate output.

The Code Generator Unit develops the code words to be transmitted. K unique
code words are transmitted before the sequence is repeated. Each correlator
requires a reference code word of appropriate delay for each transmitted code
word. The reference code words are also developed in the Code Generator Unit.
The code words are stored in the Code Storage Unit, a read only memory (ROM).
Each word is N bits in length and at the appropriate time is transferred to
the Transmit Code Register or the Reference Code Register. This is accomplished
by the Timing and Control Unit which feeds the code word address generator.

Each code word is stored at a unique address in the ROM and as each word is
addressed it is transferred to the parallel-in, serial out code register for
either transmission or reference. Each transmit word is shifted out of the
register in serial form to encode the RF pulse while the same word is shifted

16
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in serial form out of the Code Reference Register at the correct time for a
given correlator; then a one bit delaved version is shifted out on a scparate
line to the next correlator. The proper reference code is routed in the

same fashion, with the proper shift and delay, to all other correlators. The
process is then repeated with a new code word on the next transmission, with
the Timing and Control Unit providing the proper signals to maintain proper
synchronization.

IV. CODE OTRHOGONALITY

Group complementary codes have another beneficial property which can be
exploited in sensor design and developments. This feature involves mutual
orthogonality of code matrixes. As previously discussed, the group ccmplementary
code matrix, A, from Figure 13 may be operated upon to create new matrices
while maintaining the autocorrelation properties of theoriginal matrix. A
special case is when N is even and N/2 columns of the original matrix are
inverted to form a second matrix. For this case, the cross correlation

between the two matrices is identically zero.

This is an ideal property

for two closely deploved sensors, whose

transmissions can be sychronized,

each using one of the code matrices for pulse compression.

This provides

mutually noninterferring operation over the unambigious interval T. Some
sidelobes will be formed at time shifts greater than T but will he exactly
zero again at multiples of T. Figure 14 shows an example of two mutually
orthogonal matrices where the second, fourth and sixth columns of the first
matrix have been inverted.

From a given K by X group complementary 'seed" matrix, where N is even,
a new set of N code matrices can be formed with optimized autocorrelation
and mutual noninterference (orthogonal) properties. A synthesis procedure can
be formulated as a matrix operation,

Ai = Ao T; K

where A, is the "seed" code matrix, JIj is an X element vector with binary
elements +1 and -1, and K is an N element vector with all ones,

K= (111 ....1).

‘Ti; is a set of vectors of order N. When comparing element for element
hetween any two vectors in the set ‘Ty,, there are exactly N/2 agreements and
N/2 disagreements for an 8 x 8 seed code matrix.

A set of Tj vectors are shown in Figure 15 and these would permit genera-
tion of eight mutually orthogonal matrices from the initial seed Ay, TIf M
orthogonal matrices are desired (M equal to or less than N) M-T; vectors are
required.
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Figure 15. Eight transformation vectors, which may operate on a
seed 8 by 8 group complementary code matrix and produce
a set of eight mutually orthogonal complementary code
matrices with optimized autecorrelation properties.




The set of transformation vectors shown is not the only set that will
svnthesize a set of orthogonal group complementary code matrices from the
seed, but it serves as an example of the procedure. Specifically each vector
is orthogonal to all other vectors in the set.

The number of mutually orthogonal, N matrix, sets that may be formed
using a set of transformation vectors can be large. For example, for N = 4,
16 Tj vectors are available. Figure 16 presents each vector which accounts
for all 16 possible cases since N is equal to 4. Eight pairs of these vectors
are complements of each other and they are not orthogonal. Therefore, the
pair members may not be used together. Thirty-two sets of 4 orthogonal
matrices may be generated using selected members of the vectors while excluding

one pair member.

Figure 17 presents the selection of transformation vectors, in groups of
four, which may be used to generate 32 sets of matrices in which each of the
four members are orthogonal among themselves.

The existence of sets of orthogonal group complementary matrices allows
the synthesis of a large group complementary matrix structure with ¥ columns
and K rows and results in the condition N>K.

The synthesis procedure is to form a composite matrix by horizontal
concatenation of all the members, or a subset of the members, of a set of
mutually orthogonal group complementary matrices. For example, a set of
four mutually orthogonal group complementary matrices are:
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Figure 1h. Sixteen vectors which permit gereration of 32 sets of

matrices, each set has four mutually orthoconal members.
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Figure 17. Vectors for generating thirty-two sets of mutually
orthogonal matrices with four members each.
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[V. SUMMARY

Group complementary code sets have optimized autocorrelation and cross-
correlation propertics over the single pulse unambipuous interval. These
properties, coupled with the relative case of implementing biphase binary

coding, make these waveforms strong candidates for sensor pulse-compression
applications. The advantages of group complementary code sets are summarized

below:

Q

Matched Filtering for Optimized Detection

Reduced sensitivity to out-of-range clutter and multi-target returns
through optimized autocorrelation.

Large number of Group Complementary Codes available.

Reduced sensitivity to mutual interference through orthogonal
code sets.

Large sets of orthogonal waveforms available.

Ease of implementing the waveforms in a sensor system with read-
only memory (ROM) for storage of codes and biphase carrier modulation.

]




r-------Lﬁ PP — i I I A ) L o

1
®
b
}
p
!
References
i
L. verrill J. Skolnik, Introduction to Radar Systems, “cGraw 5111, 1962, 5p, 393-500.
2. Charles Z. Cook and “arvin 3erntield, Racar Signais, Acadenic Press, 1967.

3. Fred £. ‘lathanson, Radar Desiagn Principles, “cGraw Hill, 1369, 5p. 452-494,

‘a-..,,
'

.

C

. M.3.E. Golay, "Complementing Series" [RE Transactions on information Theory,
i Vol. 1T-7, pp. 32-37, April 1951,

5. R.2.A.C. Palay, "On Jrthogonal Matrices," J. Math. Physics, Vol 12, pp. 311-320, 193

1 6.S. W, Golomb and L. D. Baumert, "The Search for Hadamard “atrices,” Am., “ath
L!’ “ontnly, Vol. 70, January 1963, pp. 12-17. .

|1
i




T

DISTRIBUTION LIST

IIT Research Institute
ATTN: GACIAC
10 West 35th Street

Chicago, Illinois /0616

US Armv Materiel Svstems Analysis Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, D 21005

DRSMI-R, Dr. McCorkle

-R, Dr.

-RE,
-LP,
-RE,
-RE,
-REG,
-REG
-REG
-RER,
-REL,

-RES,

-,
-oD,
-RPR

-RPT

Mr.
Mr.
Mr.
Mr.
Mr.
Mr.
Mr.

Mr.
Mr.

Rhodes

Lindberg
Voigt
Todd
Pittman
Hollicay
Lawler
Root
Low

. Mangus
. Hatcher

Haraway
Morgan

-RR, Dr. Hartman

——

Pt et e e b

,_.
[

b
= U e e e




e
N ;}h'
o p v g of .
PARER TS TRA N R

. 'i..'!::;" TR
»¥s Iy

¢

“t

»

¢
o X E
y b
w
R




